Лабораторная работа №15

Определение показателя преломления стекла.

Цель работы: измерить показатель преломления стекла различными способами

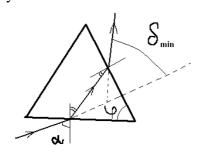
Порядок выполнения работы:

включите в оптической лаборатории «Оптик» лазер.

Задание 1: измерить показатель преломления стекла с использованием закона преломления света.

Установите в прорези D экран, а в отверстие C держатель с полуцилиндром таким образом, чтобы плоская поверхность полуцилиндра была обращена к источнику света. Поворотом полуцилиндра добейтесь, чтобы луч, отраженный от плоской поверхности, возвращался в выходное отверстие для лазерного луча. В этом положении угол падения излучения на поверхность полуцилиндра равен нулю. Запишите положение полуцилиндра φ_0 по угловой шкале его держателя. Запишите также положение преломленного луча на шкале экрана x_0 . Затем поверните полуцилиндр на некоторый угол и снимите отсчет по угловой шкале φ_1 и новый отсчет по шкале экрана x_1 . Угол поворота $\varphi = \varphi_1 - \varphi_0$.

Смещение преломленного луча $\Delta x = x_1 - x_0$. Найдите угол преломления $\varphi' = \operatorname{arctg}(\frac{\Delta x}{L})$, где L – расстояние от отверстия C до экрана. Определите показатель преломления материала полуцилиндра: $n = \frac{\sin \varphi}{\sin(\varphi - \varphi')}$. Выполните задание 5-6 раз, результаты измерений занесите


в таблицу, вычислите среднее значение показателя преломления, оцените погрешность измерения.

No॒	$\varphi_{\scriptscriptstyle{\theta}}$	φ	Sin φ	X_{θ}	Δx	tg φ'	φ'	$sin \varphi'$	n	Δn
1										
2										
•••										

 $n_{cp}=$, $\Delta n_{cp}=$.

Задание 2: измерить показатель преломления стекла по углу наименьшего отклонения луча в призме.

Установите в отверстие C держатель с равносторонней призмой таким образом, чтобы угол падения луча на призму соответствовал углу наименьшего отклонения прошедшего луча.

Поверните держатель с призмой таким образом, чтобы закрытая держателем грань была обращена к боковому полукруглому экрану, а входная грань призмы была перпендикулярна лучу лазера. Запишите положение призмы α $_0$ по угловой шкале её держателя. Затем поверните призму против часовой стрелки так, чтобы преломленный призмой луч попал на боковой экран. Продолжая поворачивать призму против часовой стрелки и наблюдая прошедший луч, отметьте такое положение призмы, при котором

Физико-математический лицей №30, Санкт-Петербург

преломленный луч изменяет свое направление по боковому экрану. В этом положении снимите отсчет по угловой шкале α_1 . Определите угол падения луча на призму $\alpha = \alpha_1 - \alpha_0$. Снимите отсчет положения светового пятна на шкале бокового экрана γ и рассчитайте угол отклонения луча $\delta = \pi - \gamma$. Момент изменения направления смещения луча на экране соответствует наименьшему углу отклонения луча в призме $\delta_{\min} = 2 \alpha - \phi$ (докажите!).

Поворачивая призму на небольшие углы в ту и другую сторону, уточните положение наименьшего отклонения не менее трех раз. Результаты измерения и погрешности занесите в таблицу.

No॒	α	$\delta_{\mathrm{min}} = \pi$ - γ	n	Δn
1				
2				

$$n=rac{\sinrac{arphi+\delta_{\min}}{2}}{\sinrac{arphi}{2}}$$
 , где $\,arphi=60^0-$ преломляющий угол призмы. $n_{\mathrm{cp}=}$, $\Delta extbf{\it n}_{\mathrm{cp}=}$.

Задание 3: измерить показатель преломления стекла по углу полного внутреннего отражения света.

Установите в отверстие С держатель с полуцилиндром таким образом, чтобы цилиндрическая поверхность полуцилиндра была обращена к источнику света. Поверните держатель полуцилиндра таким образом, чтобы угол падения луча на плоскую поверхность полуцилиндра был равен предельному углу полного внутреннего отражения. Повторите измерение несколько раз, результаты измерения и погрешность занесите в таблицу.

No	$oldsymbol{eta}_{nped}$	$\sin eta_{nped}$	n	Δn
1				
2				

$$n=\frac{1}{\sin\beta_{npe\theta}}.$$

 $n_{cp}=$, $\Delta \textit{\textbf{n}}_{\textit{cp}}=$.